Computational complexity of counting problems on 3-regular planar graphs

نویسندگان

  • Mingji Xia
  • Peng Zhang
  • Wenbo Zhao
چکیده

A variety of counting problems on 3-regular planar graphs are considered in this paper. We give a sufficient condition which guarantees that the coefficients of a homogeneous polynomial can be uniquely determined by its values on a recurrence sequence. This result enables us to use the polynomial interpolation technique in high dimension to prove the #P-completeness of problems on graphs with special requirements. Using this method, we show that #3-Regular Bipartite Planar Vertex Covers is #P-complete. Furthermore, we use Valiant’s Holant Theorem to construct a holographic reduction from it to #2,3-Regular Bipartite Planar Matchings, establishing the #P-completeness of the latter. Finally, we completely classify the problems #Planar Read-twice 3SAT with different ternary symmetric relations according to their computational complexity, by giving several more applications of holographic reduction in proving the #P-completeness of the corresponding counting problems. c © 2007 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Complexity of Counting in Sparse, Regular, and Planar Graphs

We show that a number of graph-theoretic counting problems remain NP-hard, indeed #P-complete, in very restricted classes of graphs. In particular, it is shown that the problems of counting matchings, vertex covers, independent sets, and extremal variants of these all remain hard when restricted to planar bipartite graphs of bounded degree or regular graphs of constant degree. To achieve these ...

متن کامل

Approximate Counting via Correlation Decay on Planar Graphs

We show for a broad class of counting problems, correlation decay (strong spatial mixing) implies FPTAS on planar graphs. The framework for the counting problems considered by us is the Holant problems with arbitrary constant-size domain and symmetric constraint functions. We define a notion of regularity on the constraint functions, which covers a wide range of natural and important counting p...

متن کامل

A Computational Proof of Complexity of Some Restricted Counting Problems

We explore a computational approach to proving the intractability of certain counting problems. These problems can be described in various ways, and they include concrete problems such as counting the number of vertex covers or independent sets for 3regular graphs. The high level principle of our approach is algebraic, which provides sufficient conditions for interpolation to succeed. Another a...

متن کامل

Exact and Approximate Counting of Graph Objects: Independent Sets, Eulerian Tours, and More

Counting problems are studied in a variety of areas. For example, enumerative combinatorics, statistics, statistical physics, and artificial intelligence. In this dissertation, we investigate several counting problems, which are subjects of active research. The specific problems considered are: counting independent sets in bipartite graphs (#BIS), computing the partition function of the hard-co...

متن کامل

Perfect Matching in Bipartite Planar Graphs is in UL

We prove that Perfect Matching in bipartite planar graphs is in UL, improving upon the previous bound of SPL (see [DKR10]) on its space complexity. We also exhibit space complexity bounds for some related problems. Summarizing, we show that, constructing: 1. a Perfect Matching in bipartite planar graphs is in UL 2. a Hall Obstacle in bipartite planar graphs is in NL; 3. an Even Perfect Matching...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 384  شماره 

صفحات  -

تاریخ انتشار 2007